Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Nutrients ; 16(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474882

RESUMEN

Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-ß-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.


Asunto(s)
Productos Finales de Glicación Avanzada , Piruvaldehído , Humanos , Productos Finales de Glicación Avanzada/metabolismo , ARN Ribosómico 16S , Piruvaldehído/química , Bacterias/metabolismo , Nitrógeno
2.
Food Chem ; 447: 139056, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38513495

RESUMEN

Sinapic acid (SA), canolol (CAO) and canolol dimer (CAO dimer) are the main phenolic compounds in rapeseed oil. However, their possible efficacy against glycation remains unclear. This study aims to explore the impacts of these substances on the formation of advanced glycation end products (AGEs) based on chemical and cellular models in vitro. Based on fluorescence spectroscopy results, three chemical models of BSA-fructose, BSA-methylglyoxal (MGO), and arginine (Arg)-MGO showed that SA/CAO/CAO dimer could effectively reduce AGE formation but with different abilities. After SA/CAO/CAO dimer incubation, effective protection against BSA protein glycation was observed and three different MGO adducts were formed. In MGO-induced HUVEC cell models, only CAO and CAO dimer significantly inhibited oxidative stress and cell apoptosis, accompanied by the regulation of the Nrf2-HO-1 pathway. During the inhibition, 20 and 12 lipid mediators were reversed in the CAO and CAO dimer groups compared to the MGO group.


Asunto(s)
Productos Finales de Glicación Avanzada , Óxido de Magnesio , Compuestos de Vinilo , Productos Finales de Glicación Avanzada/química , Aceite de Brassica napus , Fenoles/química , Piruvaldehído/química
3.
J Agric Food Chem ; 72(11): 5828-5841, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38442256

RESUMEN

α-Dicarbonyl compounds, such as glyoxal (GO) and methylglyoxal (MGO), are a series of chemical hazards that exist in vivo and in vitro, posing a threat to human health. We aimed to explore the scavenging effects on GO/MGO by synephrine (SYN) alone or in combination with neohesperidin (NEO). First, through LC-MS/MS, we confirmed that both SYN and NEO could effectively remove GO and form GO adducts, while NEO could also clear MGO by forming MGO adducts, and its ability to clear MGO was stronger than that of GO. Second, a synergistic inhibitory effect on GO was found when SYN and NEO were used in combination by using the Chou-Talalay method; on the other hand, SYN could promote NEO to clear more MGO, although SYN could not capture MGO. Third, after synthesizing four GO/MGO-adducts (SYN-GO-1, SYN-GO-3, NEO-GO-7, and NEO-MGO-2) and identifying their structure through NMR, strict correlations between the GO/MGO-adducts and the GO/MGO-clearance rate were found when using SYN and NEO alone or in combination. Furthermore, it was inferred that the synergistic effect between SYN and NEO stems from their mutual promotion in capturing more GO by the quantitative analysis of the adducts in the combined model. Finally, a study was conducted on flowers of Citrus aurantium L. var. amara Engl. (FCAVA, an edible tea) rich in SYN and NEO, which could serve as an effective GO and MGO scavenger in the presence of both GO and MGO. Therefore, our study provided well-defined evidence that SYN and NEO, alone or in combination, could efficiently scavenge GO/MGO at high temperatures, whether in the pure form or located in FCAVA.


Asunto(s)
Glioxal , Hesperidina/análogos & derivados , Piruvaldehído , Humanos , Piruvaldehído/química , Glioxal/química , Sinefrina , Cromatografía Liquida , Óxido de Magnesio , Temperatura , Espectrometría de Masas en Tándem
4.
J Pharm Biomed Anal ; 242: 116035, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367518

RESUMEN

Advanced glycation end products (AGEs), derived from the non-enzymatic glycation reaction, are defined as glycotoxins in various diseases including aging, diabetes and kidney injury. Exploring AGEs as potential biomarkers for these diseases holds paramount significance. Nevertheless, the high chemical structural similarity and great heterogeneity among AGEs present a formidable challenge when it comes to the comprehensive, simultaneous, and accurate detection of multiple AGEs in biological samples. In this study, an UPLC/MS/MS method for simultaneous quantification of 20 free AGEs in human serum was firstly established and applied to quantification of clinical samples from individuals with kidney injury. Simple sample preparation method through protein precipitation without derivatization was used. Method performances including imprecision, accuracy, sensitivity, linearity, and carryover were systematically validated. Intra- and inter- imprecision of 20 free AGEs were 1.93-5.94 % and 2.30-8.55 %, respectively. The method accuracy was confirmed with good recoveries ranging from 96.40 % to 103.25 %. The LOD and LOQ were 0.1-3.13 ng/mL and 0.5-6.25 ng/mL, respectively. Additionally, the 20 free AGEs displayed excellent linearity (R2 >0.9974) across a wide linear range (1.56-400 ng/mL). Finally, through simultaneous quantitation of 20 Free AGEs in 100 participants including kidney injury patient and healthy controls, we identified six free AGEs, including N6-carboxyethyl-L-arginine (CEA), N6-carboxymethyl-L-lysine (CML), methylglyoxal-derived hydroimidazolones (MG-H), N6-formyl-lysine, N6-carboxymethyl-L-arginine (CMA), and glyoxal-derived hydroimidazolone (G-H), could well distinguish kidney injury patients and healthy individuals. Among them, the levels of four free AGEs including CML, CEA, MG-H, and G-H strongly correlate with traditionally clinical markers of kidney disease. The high area under the curve (AUC) values (AUC=0.965) in receiver operating characteristic (ROC) curve indicated that these four free AGEs can be served as combined diagnostic biomarkers for the diagnosis of kidney disease.


Asunto(s)
Enfermedades Renales , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Productos Finales de Glicación Avanzada/química , Cromatografía Líquida con Espectrometría de Masas , Piruvaldehído/química , Riñón/química , Arginina , Biomarcadores
5.
Environ Sci Technol ; 58(2): 1236-1243, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38169373

RESUMEN

Aqueous-phase reactions of α-dicarbonyls with amines or ammonium have been identified as important sources of secondary brown carbon (BrC). However, the kinetics of BrC formation and the effects of pH are still not very clear. In this study, the kinetics of BrC formation by aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or alkylamines in bulk solution at different pH values are investigated. Our results reveal pH-parameterized BrC production rate constants, kBrCII (m-1 [M]-2 s-1), based on the light absorption between 300 and 500 nm: log10(kBrCII) = (1.0 ± 0.1) × pH - (7.4 ± 1.0) for reactions with glyoxal and log10(kBrCII) = (1.0 ± 0.1) × pH - (6.3 ± 0.9) for reactions with methylglyoxal. The linear slopes closing to 1.0 indicate that BrC formation is governed by the nitrogen nucleophilic addition pathway. Consequently, the absorptivities of the produced BrC increase exponentially with the increase of pH. BrC from reactions with methylglyoxal at higher pH (≥6.5) exhibits optical properties comparable to BrC from biomass burning or coal combustion, categorized as the "weakly" absorbing BrC, while BrC from reactions with methylglyoxal at lower pH (<6.0) or reactions with glyoxal (pH 5.0-7.0) falls into the "very weakly" absorbing BrC. The pH-dependent BrC feature significantly affects the solar absorption ability of the produced BrC and thus the atmospheric photochemical processes, e.g., BrC produced at pH 7.0 absorbs 14-16 times more solar power compared to that at pH 5.0, which in turn could lead to a decrease of 1 order of magnitude in the photolysis rate constants of O3 and NO2.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Piruvaldehído/química , Fotoquímica , Carbono , Aerosoles/análisis , Aminas , Glioxal , Agua/química , Concentración de Iones de Hidrógeno
6.
Food Chem ; 440: 138060, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38211407

RESUMEN

Manuka honey (MH) is a highly prized natural product from the nectar of Leptospermum scoparium flowers. Increased competition on the global market drives MH product innovations. This review updates comparative and non-comparative studies to highlight nutritional, therapeutic, bioengineering, and cosmetic values of MH. MH is a good source of phenolics and unique chemical compounds, such as methylglyoxal, dihydroxyacetone, leptosperin glyoxal, methylsyringate and leptosin. Based on the evidence from in vitro, in vivo and clinical studies, multifunctional bioactive compounds of MH have exhibited anti-oxidative, anti-inflammatory, immunomodulatory, anti-microbial, and anti-cancer activities. There are controversial topics related to MH, such as MH grading, safety/efficacy, implied benefits, and maximum levels of contaminants concerned. Artificial intelligence can optimize MH studies related to chemical analysis, toxicity prediction, multi-functional mechanism exploration and product innovation.


Asunto(s)
Miel , Miel/análisis , Inteligencia Artificial , Néctar de las Plantas/química , Flores/química , Piruvaldehído/química , Leptospermum/química
7.
Protein J ; 43(1): 39-47, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38017314

RESUMEN

Therapeutic proteins are potent, fast-acting drugs that are highly effective in treating various conditions. Medicinal protein usage has increased in the past 10 years, and it will evolve further as we better understand disease molecular pathways. However, it is associated with high processing costs, limited stability, difficulty in being administered as an oral medication, and the inability of large proteins to penetrate tissue and reach their target locations. Many methods have been developed to overcome the problems with the stability and chaperone activity of therapeutic proteins, viz., the addition of external agents (changing the properties of the surrounding solvent by using stabilizing excipients, e.g., amino acids, sugars, polyols) and internal agents (chemical modifications that influence its structural properties, e.g., mutations, glycosylation). However, these methods must completely clear protein instability and chaperone issues. There is still much work to be done on finetuning chaperone proteins to increase their biological efficacy and stability. Methylglyoxal (MGO), a potent dicarbonyl compound, reacts with proteins and forms covalent cross-links. Much research on MGO scavengers has been conducted since they are known to alter protein structure, which may result in alterations in biological activity and stability. MGO is naturally produced within our body, however, its impact on chaperones and protein stability needs to be better understood and seems to vary based on concentration. This review highlights the efforts of several research groups on the effect of MGO on various proteins. It also addresses the impact of MGO on a client protein, α-crystallin, to understand the potential solutions to the protein's chaperone and stability problems.


Asunto(s)
Piruvaldehído , alfa-Cristalinas , Humanos , Piruvaldehído/química , Piruvaldehído/farmacología , Óxido de Magnesio , alfa-Cristalinas/química , alfa-Cristalinas/metabolismo , Chaperonas Moleculares/química , Pliegue de Proteína
8.
Biochemistry ; 62(21): 3126-3133, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37884446

RESUMEN

The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.


Asunto(s)
Enfermedad de Parkinson , Piruvaldehído , Humanos , Piruvaldehído/química , Piruvaldehído/metabolismo , Enfermedad de Parkinson/metabolismo , Óxido de Magnesio , Ácido Láctico , Proteína Desglicasa DJ-1
9.
Chem Res Toxicol ; 36(11): 1768-1777, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37888804

RESUMEN

Methylglyoxal (MGO) and glyoxal (GO) are toxic α-dicarbonyl compounds that undergo reactions with amine containing molecules such as proteins and amino acids and result in the formation of advanced glycation end products (AGEs). This study aimed at investigating the reactivity of arginine (Arg) or dimethylarginine (SDMA or ADMA) with MGO or GO. The solutions of arginine and MGO or GO were prepared in PBS buffer (pH 7.4) and incubated at 37 °C. Direct electrospray ionization-high-resolution mass spectrometry (ESI-HRMS) analysis of the reaction mixture of Arg and MGO revealed the formation of Arg-MGO (1:1) and Arg-2MGO (1:2) products and their corresponding dehydrated products. Further liquid chromatography (LC)-MS analyses revealed the presence of isomeric products in each 1:1 and 1:2 product. The [M + H]+ of each isomeric product was subjected to MS/MS experiments for structural elucidation. The MS/MS spectra of some of the products showed a distinct structure indicative fragment ions, while others showed similar data. The types of products formed by the arginines with GO were also found to be similar to that of MGO. The importance of the guanidine group in the formation of the AGEs was reflected in similar incubation experiments with ADMA and SDMA. The structures of the products were proposed based on the comparison of the retention times and HRMS and MS/MS data interpretation, and some of them were confirmed by drawing analogy to the data reported in the literature.


Asunto(s)
Glioxal , Piruvaldehído , Glioxal/química , Piruvaldehído/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Óxido de Magnesio , Productos Finales de Glicación Avanzada/análisis , Arginina/química
10.
J Agric Food Chem ; 71(41): 15261-15269, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37796058

RESUMEN

Honey from the nectar of the Manuka tree (Leptospermum scoparium) grown in New Zealand contains high amounts of antibacterial methylglyoxal (MGO). MGO can react with proteins to form peptide-bound Maillard reaction products (MRPs) such as Nε-carboxyethyllysine (CEL) and "methylglyoxal-derived hydroimidazolone 1" (MG-H1). To study the reactions of MGO with honey proteins during storage, three manuka honeys with varying amounts of MGO and a kanuka honey (Kunzea ericoides) spiked with various MGO concentrations up to 700 mg/kg have been stored at 37 °C for 10 weeks, and the formation of protein-bound MRPs has been analyzed via high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) following isolation of the protein fraction and enzymatic hydrolysis. During storage, contents of protein-bound CEL and MG-H1 increased continuously, directly depending on the MGO content. For honeys with large amounts of MGO, a slower formation of Nε-fructosyllysine (FL) was observed, indicating competing reactions of glucose and MGO with lysine. Furthermore, the lysine modification increased with storage independently from the MGO concentration. Up to 58-61% of the observed lysine modification was explainable with the formation of CEL and FL, indicating that other reactions, most likely the formation of Heyns products from lysine and fructose, may play an important role. Our results can contribute to the authentication of manuka honey.


Asunto(s)
Miel , Miel/análisis , Espectrometría de Masas en Tándem , Lisina , Piruvaldehído/química , Óxido de Magnesio , Proteínas , Leptospermum/química , Productos Finales de Glicación Avanzada , Reacción de Maillard
11.
Environ Sci Technol ; 57(33): 12351-12361, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37542457

RESUMEN

Aqueous-phase reactions of α-dicarbonyls with ammonium or amines have been identified as important sources of secondary brown carbon (BrC). However, the identities of most chromophores in these reactions and the effects of pH remain largely unknown. In this study, the chemical structures, formation pathways, and optical properties of individual BrC chromophores formed through aqueous reactions of α-dicarbonyls (glyoxal and methylglyoxal) with ammonium, amino acids, or methylamine at different pH's were characterized in detail by liquid chromatography-photodiode array-high resolution tandem mass spectrometry. In total, 180 chromophores are identified, accounting for 29-79% of the light absorption of bulk BrC for different reactions. Thereinto, 155 newly identified chromophores, including 76 imidazoles, 57 pyrroles, 10 pyrazines, 9 pyridines, and 3 imidazole-pyrroles, explain additionally 9-69% of the light absorption, and these chromophores mainly involve four formation pathways, including previously unrecognized reactions of ammonia or methylamine with the methylglyoxal dimer for the formation of pyrroles. The pH in these reactions also shows remarkable effects on the formation and transformation of BrC chromophores; e.g., with the increase of pH from 5.0 to 7.0, the light absorption contributions of imidazoles in identified chromophores decrease from 72% to 65%, while the light absorption contributions of pyrazines increase from 5% to 13% for the methylglyoxal + ammonium reaction; meanwhile, more small nitrogen heterocycles transformed into oligomers (e.g., C9 and C12 pyrroles) via reaction with methylglyoxal. These newly identified chromophores and proposed formation pathways are instructive for future field studies of the formation and transformation of aqueous-phase BrC.


Asunto(s)
Aminas , Compuestos de Amonio , Piruvaldehído/química , Carbono , Aerosoles/análisis , Agua/química , Metilaminas , Pirroles
12.
Molecules ; 28(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513213

RESUMEN

Human exposure to dicarbonyls occurs via ingestion (e.g., food), inhalation (e.g., electronic cigarettes) and dysregulation of endogenous metabolic pathways (e.g., glycolysis). Dicarbonyls are electrophiles able to induce carbonylation of endogenous substrate. They have been associated with the onset and progression of several human diseases. Several studies have advocated the use of dicarbonyl binders as food preservatives or as drugs aimed at mitigating carbonylation. This study presents the setup of an easy and cheap assay for the screening of selective and potent dicarbonyl binders. The method is based on the incubation of the candidate molecules with a molecular probe. The activity is then determined by measuring the residual concentration of the molecular probe over time by liquid chromatography (LC). However, the naturally occurring dicarbonyls (e.g., glyoxal, methylglyoxal) are not appealing as probes since they are hard to separate and detect using the most popular LC variants. Benzylglyoxal (BGO) was therefore synthesized and tested, proving to be a convenient probe that allows a direct quantification of residual dicarbonyls by reversed phase LC without derivatization. The method was qualified by assessing the binding ability of some molecules known as binders of natural occurring dicarbonyls, obtaining results consistent with literature.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Humanos , Glioxal , Piruvaldehído/química , Cromatografía Liquida/métodos , Sondas Moleculares
13.
Protein Sci ; 32(5): e4641, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060572

RESUMEN

DJ-1, a protein encoded by PARK7 plays a protective role against neurodegeneration. Since its glyoxalase III activity catalyzing methylglyoxal (MG) to lactate was discovered, DJ-1 has been re-established as a deglycase decomposing the MG-intermediates with amino acids and nucleotides (hemithioacetal and hemiaminal) rather than MG itself, but it is still debatable. Here, we have clarified that human DJ-1 directly recognizes MG, and not MG-intermediates, by monitoring the detailed catalytic processes and enantiomeric lactate products. The hemithioacetal intermediate between C106 of 15 N-labeled DJ-1 (15N DJ-1) and MG was also monitored by NMR. TRIS molecule formed stable diastereotopic complexes with MG (Kd , 1.57 ± 0.27 mM) by utilizing its three OH groups, which likely disturbed the assay of deglycase activity. The low kcat of DJ-1 for MG and its MG-induced structural perturbation may suggest that DJ-1 has a regulatory function as an in vivo sensor of reactive carbonyl stress.


Asunto(s)
Enfermedad de Parkinson , Humanos , Aldehído Oxidorreductasas , Ácido Láctico/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/genética , Proteína Desglicasa DJ-1/metabolismo , Piruvaldehído/química , Piruvaldehído/metabolismo
14.
Food Chem ; 416: 135801, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870150

RESUMEN

Inhibition of advanced glycation end products (AGEs) formed in protein glycosylation is crucial for minimizing diabetic complications. Herein, the anti-glycation potential of hesperetin-Cu (II) complex was investigated. Hesperetin-Cu (II) complex strongly inhibited three stages glycosylation products in bovine serum albumin (BSA)-fructose model, especially for the inhibition of AGEs (88.45%), which was stronger than hesperetin (51.76%) and aminoguanidine (22.89%). Meanwhile, hesperetin-Cu (II) complex decreased the levels of BSA carbonylation and oxidation products. 182.50 µg/mL of hesperetin-Cu (II) complex inhibited 66.71% ß-crosslinking structures of BSA, and scavenged 59.80% superoxide anions and 79.76% hydroxyl radicals. Moreover, after incubating with methylglyoxal for 24 h, hesperetin-Cu (II) complex removed 85.70% methylglyoxal. The mechanisms of protein antiglycation by hesperetin-Cu (II) complex may be through protecting structure, trapping methylglyoxal, scavenging free radicals and interacting with BSA. This study may contribute to the development of hesperetin-Cu (II) complex as a functional food additive against protein glycation.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Productos Finales de Glicación Avanzada/química , Piruvaldehído/química , Albúmina Sérica Bovina/química
15.
Molecules ; 28(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36985650

RESUMEN

Glycation and the accumulation of advanced glycation end-products (AGEs) are known to occur during aging, diabetes and neurodegenerative diseases. Increased glucose or methylglyoxal (MGO) levels in the blood of diabetic patients result in increased AGEs. A diet rich in bioactive food compounds, like polyphenols, has a protective effect. The aim of this work is to evaluate the capacity of hazelnut skin polyphenolic extract to protect THP-1-macrophages from damage induced by AGEs. The main polyphenolic subclass was identified and quantified by means of HPLC/MS and the Folin-Ciocalteu method. AGEs derived from incubation of bovine serum albumin (BSA) and MGO were characterized by fluorescence. Cell viability measurement was performed to evaluate the cytotoxic effect of the polyphenolic extract in macrophages. Reactive oxygen species' (ROS) production was assessed by the H2-DCF-DA assay, the inflammatory response by real-time PCR for gene expression, and the ELISA assay for protein quantification. We have shown that the polyphenolic extract protected cell viability from damage induced by AGEs. After treatment with AGEs, macrophages expressed high levels of pro-inflammatory cytokines and ROS, whereas in co-treatment with polyphenol extract there was a reduction in either case. Our study suggests that hazelnut skin polyphenol-rich extracts have positive effects and could be further investigated for nutraceutical applications.


Asunto(s)
Corylus , Eliminación de Residuos , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Reacción de Maillard , Alimentos , Corylus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido de Magnesio , Macrófagos/metabolismo , Piruvaldehído/química , Polifenoles/análisis
16.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985830

RESUMEN

Methylglyoxal (MGO) is considered to be one of the vital components responsible for the anti-bacterial activity of Leptospermum spp. (Manuka) honey. While many studies have demonstrated a dose-dependent antibacterial activity for MGO in vitro, from a therapeutic viewpoint, it is also important to confirm its release from Manuka honey and also from Manuka honey-based formulations. This study is the first to report on the release profile of MGO from five commercial products containing Manuka honey using a Franz diffusion cell and High-Performance Liquid Chromatography (HPLC) analysis. The release of MGO expressed as percentage release of MGO content at baseline was monitored over a 12 h period and found to be 99.49 and 98.05% from an artificial honey matrix and NZ Manuka honey, respectively. For the investigated formulations, a time-dependent % MGO release between 85% and 97.18% was noted over the 12 h study period.


Asunto(s)
Miel , Miel/análisis , Piruvaldehído/química , Óxido de Magnesio , Cromatografía Líquida de Alta Presión , Leptospermum/química , Antibacterianos/farmacología , Antibacterianos/análisis
17.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985839

RESUMEN

The most significant reactive α-dicarbonyl RCS involved in the pathomechanism of glycation and related diseases is methylglyoxal (MGO). Hyperglycemia promotes the generation of MGO and leads to the formation of advanced glycation end products (AGEs). Therefore, MGO trapping and glycation inhibition appear to be important therapeutic targets in prediabetes, diabetes, and in the early prevention of hyperglycemic complications. Peppermint leaf is commonly used as herbal tea, rich in polyphenols. Eriocitrin, its predominant component, in a double-blind, randomized controlled study reversed the prediabetic condition in patients. However, the antiglycation activity of this plant material and its polyphenols has not been characterized to date. Therefore, the aim of this study was to evaluate the ability of a peppermint leaf dry extract and its polyphenols to inhibit non-enzymatic protein glycation in a model with bovine serum albumin (BSA) and MGO as a glycation agent. Peppermint polyphenols were also evaluated for their potential to trap MGO in vitro, and the resulting adducts were analyzed by UHPLC-ESI-MS. To relate chemical composition to glycation inhibitory activity, the obtained peppermint extract was subjected to qualitative and quantitative analysis. The capability of peppermint leaf polyphenols to inhibit glycation (27.3-77.2%) and form adducts with MGO was confirmed. In the case of flavone aglycones, mono- and di-adducts with MGO were observed, while eriodictyol and eriocitrin effectively produced only mono-adducts. Rosmarinic acid and luteolin-7-O-glycosides did not reveal this action. IC50 of the peppermint leaf dry extract was calculated at 2 mg/mL, equivalent to a concentration of 1.8 µM/mL of polyphenols, including ~1.4 µM/mL of flavonoids and ~0.4 µM/mL of phenolic acids. The contribution of the four major components to the anti-AGE activity of the extract was estimated at 86%, including eriocitrin 35.4%, rosmarinic acid 25.6%, luteolin-7-O-rutinoside 16.9%, luteolin-7-O-ß-glucuronoside 8.1%, and others 14%. The effect of peppermint dry extract and polyphenols in inhibiting MGO-induced glycation in vitro was comparable to that of metformin used as a positive control.


Asunto(s)
Polifenoles , Piruvaldehído , Humanos , Polifenoles/química , Piruvaldehído/química , Mentha piperita/química , Luteolina/análisis , Óxido de Magnesio , Extractos Vegetales/química , Hojas de la Planta/química , Productos Finales de Glicación Avanzada/química , Ácido Rosmarínico
18.
J Proteome Res ; 22(6): 2144-2148, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36988126

RESUMEN

Although malondialdehyde and methylglyoxal have the same molecular formula, they have different chemistry in forming protein adducts. The major lysine adduct of malondialdehyde in hemoglobin is the N-propenal type, while that of methylglyoxal is N6-(1-carboxyethyl)lysine. This Letter provides evidence that the "methylglyoxal-like" hemoglobin adducts are not derived from malondialdehyde. This Letter also discusses the quantification of malondialdehyde-induced post-translational modifications in human hemoglobin by different mass spectrometry-based methods.


Asunto(s)
Hemoglobinas , Piruvaldehído , Humanos , Piruvaldehído/química , Malondialdehído/química , Hemoglobinas/química , Espectrometría de Masas , Procesamiento Proteico-Postraduccional
19.
Int J Biol Macromol ; 237: 124161, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965563

RESUMEN

Penta-O-galloyl-ß-d-glucose (PGG) was prepared from tannic acid methanolysis products based on HSCCC, and its protective effects and mechanism on the glucose-induced glycation were investigated for the first time. PGG was confirmed to exhibit strong anti-AGEs effects in bovine serum albumin (BSA)-glucose (Glu) and BSA-methylglyoxal (MGO) glycation systems. It was showed that PGG could inhibit the AGEs formation by blocking glycated intermediates (fructosamine and α-dicarbonyl compounds), eliminating radicals, and chelating metal-ions. In-depth mechanism analysis proved that PGG could prevent BSA from glycation by hindering the accumulation of amyloid fibrils, stabilizing the BSA secondary structures, and binding the partial glycation sites. Furthermore, PGG exhibited a prominent trapping capacities on the reactive intermediate MGO by generating PGG-mono-MGO adduct. This research indicated that PGG could be an effective agent to block Glu/MGO-triggered glycation and offered new insights into PGG as a functional ingredient in food materials for preventing diabetic syndrome.


Asunto(s)
Glucosa , Rubiaceae , Productos Finales de Glicación Avanzada/metabolismo , Reacción de Maillard , Glicosilación , Albúmina Sérica Bovina/química , Piruvaldehído/química
20.
Chemosphere ; 319: 137977, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36736840

RESUMEN

Among the highly oxygenated species formed in situ in the atmosphere, α-dicarbonyl compounds are the most reactive species, thus contributing to the formation of secondary organic aerosols that affect both air quality and climate. They are ubiquitous in the atmosphere and are easily transferred to the atmospheric aqueous phase due to their high solubility. In addition, α-dicarbonyl compounds are toxic compounds found in food in biochemistry studies as they can be produced endogenously through various pathways and exogenously through the Maillard reaction. In this work, we take advantage of the high reactivity of α-dicarbonyl compounds in alkaline solutions (intramolecular Cannizzaro reaction) to develop an analytical method based on high performance ion chromatography. This fast and efficient method is suitable for glyoxal, methylglyoxal and phenylglyoxal which are detected as glycolate, lactate and mandelate anions respectively, with 100% conversion at pH > 12 and room temperature for exposure times to hydroxide ranging from 5 min to 4 h. Diacetyl is detected as 2,4-dihydroxy-2,4-dimethyl-5-oxohexanoate due to a base-catalysed aldol reaction that occurs before the Cannizzaro reaction. The analytical method is successfully applied to monitor glyoxal consumption during aqueous phase HO∙-oxidation, an atmospherically relevant reaction using concentrations that can be observed in fog and cloud water. The method also reveals potential analytical artifacts that can occur in the use of ion chromatography for α-hydroxy carboxylates measurements in complex matrices due to α-dicarbonyl conversion during the analysis time. An estimation of the artifact is given for each of the studied α-hydroxy carboxylates. Other polyfunctional and pH-sensitive compounds that are potentially present in environmental samples (such as nitrooxycarbonyls) can also be converted into α-hydroxy carboxylates and/or nitrite ions within the HPIC run. This shows the need for complementary analytical measurements when complex matrices are studied.


Asunto(s)
Glioxal , Piruvaldehído , Glioxal/análisis , Glioxal/química , Piruvaldehído/análisis , Piruvaldehído/química , Diacetil/análisis , Ácidos Carboxílicos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...